주요메뉴 바로가기 본문 바로가기

주메뉴

IBS Conferences
3D Reconstructions of Individual Nanoparticles 게시판 상세보기
Title 3D Reconstructions of Individual Nanoparticles
Embargo date 2020-04-03 04:00 Hits 881
Research Center Center for Nanoparticle Research
Press release  
att.  

3D Reconstructions of Individual Nanoparticles

Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering.

Figure 1. 3D renderings of platinum nanoparticles.
Figure 1. 3D renderings of platinum nanoparticles. Each white sphere represents the position of a platinum atom.

What do you see in the picture above (Figure 1)? Merely a precisely-drawn three-dimensional picture of nanoparticles? Far more than that, nanotechnologists will say, due to a new study published in the journal Science. Whether a material catalyzes chemical reactions or impedes any molecular response is all about how its atoms are arranged. The ultimate goal of nanotechnology is centered around the ability to design and build materials atom by atom, thus allowing scientists to control their properties in any given scenario. However, atomic imaging techniques have not been sufficient to determine the precise three-dimensional atomic arrangements of materials in liquid solution, which would tell scientists how materials behave in everyday life, such as in water or blood plasma.

Researchers at the Center for Nanoparticle Research within the Institute for Basic Science (IBS, South Korea), in collaboration with Dr. Hans Elmlund at Monash University’s Biomedicine Discovery Institute in Australia and Dr. Peter Ercius at Lawrence Berkeley National Laboratory’s Molecular Foundry in the USA, have reported a new analytic methodology that can resolve the 3D structure of individual nanoparticles with atomic-level resolution. The 3D atomic positions of individual nanoparticles can be extracted with a precision of 0.02 nm—six times smaller than the smallest atom: hydrogen. In other words, this high-resolution method detects individual atoms and how they are arranged within a nanoparticle.

The researchers call their development 3D SINGLE (Structure Identification of Nanoparticles by Graphene Liquid cell Electron microscopy) and utilize mathematical algorithms to derive 3D structures from a set of 2D imaging data acquired by one of the most powerful microscopes on Earth. First, a nanocrystal solution is sandwiched in-between two graphene sheets which are each just a single atom thick (Figure 2.1). “If a fish bowl were made of a thick material, it would be hard to see through it. Since graphene is the thinnest and strongest material in the world, we created graphene pockets that allow the electron beam of the microscope to shine through the material while simultaneously sealing the liquid sample,” explains PARK Jungwon, one of the corresponding authors of the study (assistant professor at the School of Chemical and Biological Engineering in Seoul National University).

Figure 2.1 Obtaining 3D structures at atomic resolution in a liquid.
Figure 2.1 Obtaining 3D structures at atomic resolution in a liquid. The schematic shows a liquid sample contained between two sheets of graphene – the thinnest, strongest material known. Nanoparticles in the liquid freely rotate while a transmission electron microscope takes thousands of images of the nanoparticles. The images are then analyzed by the authors’ software to determine the location of every atom in each nanoparticle

Figure 2.3 3D rendering of a less well-ordered nanoparticle.
Figure 2.3 3D rendering of a less well-ordered nanoparticle. The nanoparticle contains a defect which would be difficult to examine using any other method.

Figure 2.2 3D rendering of a highly ordered (crystalline) nanoparticle.
Figure 2.2 3D rendering of a highly ordered (crystalline) nanoparticle. Each silver sphere represents the measured position of a Pt atom.

The researchers obtain movies at 400 images per second of each nanoparticle freely rotating in liquid using a high-resolution transmission electron microscope (TEM). The team then applies their reconstruction methodology to combine the 2D images into a 3D map showing the atomic arrangement. Locating the precise position of each atom tells researchers how the nanoparticle was created and how it will interact in chemical reactions.

The study defined the atomic structures of eight platinum nanoparticles – platinum is the most valuable of the precious metals, used in a number of applications such as catalytic materials for energy storage in fuel cells and petroleum refinement. Even though all of the particles were synthesized in the same batch, they displayed important differences in their atomic structures which affect their performance.

“Now it is possible to experimentally determine the precise 3D structures of nanomaterials that had only been theoretically speculated. The methodology we developed will contribute to fields where nanomaterials are used, such as fuel cells, hydrogen vehicles, and petrochemical synthesis,” says Dr. KIM Byung Hyo, the first author of the study. Notably, this methodology can measure the atomic displacement and strain on the surface atoms of individual nanoparticles. The strain analysis from the 3D reconstruction facilitates characterization of the active sites of nanocatalysts at the atomic scale, which will enable structure-based design to improve the catalytic activities. The methodology can also contribute more generally to the enhancement of nanomaterials’ performance.

Movie 1. 3D Reconstructions of Individual Nanoparticles. 3D density maps, atomic position maps, and strain maps of 8 reconstructed nanocrystals show critical differences between the individual particles.
Movie 1. 3D Reconstructions of Individual Nanoparticles. 3D density maps, atomic position maps, and strain maps of 8 reconstructed nanocrystals show critical differences between the individual particles.

“We have developed a groundbreaking methodology for determining the structures that govern the physical and chemical properties of nanoparticles at the atomic level in their native environment. The methodology will provide important clues in the synthesis of nanomaterials. The algorithm we introduced is related to new drug development through structure analysis of proteins and big data analysis, so we are expecting further application to new convergence research,” notes Director HYEON Taeghwan of the IBS Center for Nanoparticle Research.

This study is jointly supported by the Institute for Basic Science (IBS), Samsung Science and Technology Foundation (SSTF), and the Molecular Foundry (U.S. Department of Energy (DOE) Office of Science User Facility).

Dahee Carol Kim
IBS Communications Team

Notes for editors

- References
Byung Hyo Kim, Junyoung Heo, Sungin Kim, Cyril F. Reboul, Hoje Chun, Dohun Kang, Hyeonhu Bae, Hyejeong Hyun, Jongwoo Lim, Hoonkyung Lee, Byungchan Han, Taeghwan Hyeon, A. Paul Alivisatos, Peter Ercius*, Hans Elmlund*, Jungwon Park*. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science DOI: 10.1126/science.aax3233

- Media Contact
For further information or to request media assistance, please contact Prof. Jungwon Park (+82-2-880-2259, jungwonpark@snu.ac.kr), Dr. Byung Hyo Kim (+82-2-880-1582, byunghyokim@snu.ac.kr), Ms. Dahee Carol Kim, Public Information Officer of IBS & Science Communicator (+82-42-878-8133, clitie620@ibs.re.kr)

- About the Institute for Basic Science (IBS)
IBS was founded in 2011 by the government of the Republic of Korea with the sole purpose of driving forward the development of basic science in South Korea. IBS has 30 research centers as of January 2020. There are ten physics, two mathematics, six chemistry, six life science, one Earth science, and five interdisciplinary research centers.

- About the Monash Biomedicine Discovery Institute
Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

- About the Molecular Foundry
Supported by the U.S. Department of Energy Office of Basic Energy Sciences (BES) through their Nanoscale Science Research Center (NSRC) program, the Molecular Foundry is a national User Facility for nanoscale science serving hundreds of academic, industrial and government scientists around the world each year.

  • [bioengineer.org] Science snapshots from Berkeley Lab: 3D nanoparticles and magnetic spin
  • [scitechdaily] Resolving the 3D Structure of Individual Nanoparticles With Atomic-Level Resolution
  • [AZoNano] Analytic Method to Resolve 3D Structure of Individual Nanoparticles
  • [ScienceMag] Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution
  • [EurekAlert!] 3D reconstructions of individual nanoparticles
  • [phys.org] 3-D reconstructions of individual nanoparticles
  • [ScienceDaily] 3D reconstructions of individual nanoparticles
  • Research

    Are you satisfied with the information on this page?

    Content Manager
    Communications Team : Kwon Ye Seul   042-878-8237
    Last Update 2023-11-28 14:20